(广安)如图,边长为1的正方形ABCD一边AD在x负半轴上,直线l:经过点B(x,1)与x轴,y轴分别交于点H,F,抛物线顶点E在直线l上.(1)求A,D两点的坐标及抛物线经过A,D两点时的解析式;(2)当抛物线的顶点E(m,n)在直线l上运动时,连接EA,ED,试求△EAD的面积S与m之间的函数解析式,并写出m的取值范围;(3)设抛物线与y轴交于G点,当抛物线顶点E在直线l上运动时,以A,C,E,G为顶点的四边形能否成为平行四边形?若能,求出E点坐标;若不能,请说明理由.
(本小题满分8分)如图,登山缆车从点A出发,途经点B后到达终点C,其中AB段与BC段的运行路程均为200m,且AB段的运行路线与水平面的夹角为30°,BC段的运行路线与水平面的夹角为42°,求缆车从点A运行到点C的垂直上升的距离.(参考数据:sin42°≈0.67 ,cos42°≈0.74 , tan42°≈0.90)
(本小题满分6分)化简:.
(本小题满分12分,每题6分)(1)计算:.(2)解方程组:.
已知抛物线的表达式为(1)若抛物线与轴有交点,求的取值范围;(2)设抛物线与轴两个交点的横坐标分别为、,若,求的值;(3)若P、Q是抛物线上位于第一象限的不同两点,PA、QB都垂直于轴,垂足分别为A、B,且△OPA与△OQB全等,求证:
已知AB是圆O的切线,切点为B,直线AO交圆O于C、D两点,CD=2,∠DAB=30°,动点P在直线AB上运动,PC交圆O于另一点Q,(1)当点P,运动到Q、C两点重合时(如图1),求AP的长。(2)点运动过程中,有几个位置(几种情况)使△CQD的面积为?( 直接写出答案)(3)当使△CQD的面积为,且Q位于以CD为直径的的上半圆上,CQ>QD时(如图2),求AP的长。