首页 / 初中数学 / 试题详细
  • 更新 2022-09-04
  • 科目 数学
  • 题型 解答题
  • 难度 较难
  • 浏览 53

如图,抛物线 y = a x 2 + 2 x + c ( a < 0 ) x 轴交于点 A 和点 B (点 A 在原点的左侧,点 B 在原点的右侧),与 y 轴交于点 C OB = OC = 3

(1)求该抛物线的函数解析式.

(2)如图1,连接 BC ,点 D 是直线 BC 上方抛物线上的点,连接 OD CD OD BC 于点 F ,当 S ΔCOF : S ΔCDF = 3 : 2 时,求点 D 的坐标.

(3)如图2,点 E 的坐标为 ( 0 , 3 2 ) ,点 P 是抛物线上的点,连接 EB PB PE 形成的 ΔPBE 中,是否存在点 P ,使 PBE PEB 等于 2 OBE ?若存在,请直接写出符合条件的点 P 的坐标;若不存在,请说明理由.

登录免费查看答案和解析

如图,抛物线yax22xc(a<0)与x轴交于点A和点B(点