如图,点 P 是 ⊙ O 的直径 AB 延长线上一点,且 AB = 4 ,点 M 为 AB ̂ 上一个动点(不与 A , B 重合),射线 PM 与 ⊙ O 交于点 N (不与 M 重合).
(1)当 M 在什么位置时, ΔMAB 的面积最大,并求出这个最大值;
(2)求证: ΔPAN ∽ ΔPMB .
(来宾)过点(0,﹣2)的直线:()与直线:交于点P(2,m).(1)写出使得的x的取值范围; (2)求点P的坐标和直线的解析式.
(南宁)在平面直角坐标系中,已知A、B是抛物线()上两个不同的点,其中A在第二象限,B在第一象限,(1)如图1所示,当直线AB与x轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A、B两点的横坐标的乘积.(2)如图2所示,在(1)所求得的抛物线上,当直线AB与x轴不平行,∠AOB仍为90°时,A.B两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由.(3)在(2)的条件下,若直线分别交直线AB,y轴于点P、C,直线AB交y轴于点D,且∠BPC=∠OCP,求点P的坐标.
(南宁)如图1,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.(1)用含a的式子表示花圃的面积.(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽.(3)已知某园林公司修建通道、花圃的造价(元)、(元)与修建面积x(m2)之间的函数关系如图2所示,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过10米,那么通道宽为多少时,修建的通道和花圃的总造价最低,最低总造价为多少元?
(贺州)如图,将矩形ABCD沿对角线BD对折,点C落在E处,BE与AD相交于点F.若DE=4,BD=8.(1)求证:AF=EF;(2)求证:BF平分∠ABD.
(桂林)如图,△ABC各顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1). (1)在图中画出△ABC向左平移3个单位后的△A1B1C1; (2)在图中画出△ABC绕原点O逆时针旋转90°后的△A2B2C2; (3)在(2)的条件下,AC边扫过的面积是 .