根据下列材料,解答问题.
等比数列求和:
概念:对于一列数 a 1 , a 2 , a 3 , … a n … ( n 为正整数),若从第二个数开始,每一个数与前一个数的比为一定值,即 a k a k − 1 = q (常数),那么这一列数 a 1 , a 2 , a 3 , … , a n , … 成等比数列,这一常数 q 叫做该数列的公比.
例:求等比数列1,3, 3 2 , 3 3 , … , 3 100 的和,
解:令 S = 1 + 3 + 3 2 + 3 3 + … + 3 100
则 3 S = 3 + 3 2 + 3 3 + … + 3 100 + 3 101
因此, 3 S − S = 3 101 − 1 ,所以 S = 3 101 − 1 2
即 1 + 3 + 3 2 + 3 3 … + 3 100 = 3 101 − 1 2
仿照例题,等比数列1,5, 5 2 , 5 3 , … , 5 2018 的和为 .
如图,下列图形是将正三角形按一定规律排列,则第六个图形中所有正三角形的个数有 ___________________.
要组织一场足球比赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,问比赛组织者应邀请多少只球队参赛?设比赛组织者应邀请x支球队参赛,根据题意列出的方程是________________________________.
小明在距离路灯6米的地方,发现自己在地面上的影长是2米,小明的身高是1.6米,那么路灯离地面的高度是 ____________________米.
分解因式:= ____________________.
计算:=________________.