如图,已知抛物线 y = a x 2 + bx + 1 经过 A ( − 1 , 0 ) , B ( 1 , 1 ) 两点.
(1)求该抛物线的解析式;
(2)阅读理解:
在同一平面直角坐标系中,直线 l 1 : y = k 1 x + b 1 ( k 1 , b 1 为常数,且 k 1 ≠ 0 ) ,直线 l 2 : y = k 2 x + b 2 ( k 2 , b 2 为常数,且 k 2 ≠ 0 ) ,若 l 1 ⊥ l 2 ,则 k 1 · k 2 = − 1 .
解决问题:
①若直线 y = 3 x − 1 与直线 y = mx + 2 互相垂直,求 m 的值;
②抛物线上是否存在点 P ,使得 ΔPAB 是以 AB 为直角边的直角三角形?若存在,请求出点 P 的坐标;若不存在,请说明理由;
(3) M 是抛物线上一动点,且在直线 AB 的上方(不与 A , B 重合),求点 M 到直线 AB 的距离的最大值.
如图,已知一次函数的图象与x轴、y轴分别交于A、B两点,且与反比例函数的图象在第一象限交于C点,CD垂直与x轴,垂足为D.若OA=OB=OD=1, (1)求点A,B,D的坐标; (2)求一次函数和反比例函数的解析式。
某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工 程队单独施工比乙工程队单独施工多用30天完成此项工程.求甲、乙两工程队单独完成此项 工程各需要多少天?
已知在平面直角坐标系中的位置如图10所示. (1)分别写出图中点的坐标; (2)画出绕点按顺时针方向旋转; (3)求点旋转到点所经过的路线长(结果保留).
袋中装有除数字不同其它都相同的六个小球,球上分别标有数字1,2,3,4,5,6. (1)从袋中摸出一个小球,求小球上数字小于3的概率; (2)将标有1,2,3数字的小球取出放入另外一个袋中,分别从两袋中各摸出一个小球, 求数字之和为偶数的概率.(要求用列表法或画树状图求解)
如图所示,在中,. (1)尺规作图:作线段的垂直平分线(保留作图痕迹,不写作法); (2)在已作的图形中,若分别交及的延长线于点,连接.求证:.