由多项式乘法: ( x + a ) ( x + b ) = x 2 + ( a + b ) x + ab ,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式: x 2 + ( a + b ) x + ab = ( x + a ) ( x + b ) .
示例:分解因式: x 2 + 5 x + 6 = x 2 + ( 2 + 3 ) x + 2 × 3 = ( x + 2 ) ( x + 3 ) .
(1)尝试:分解因式: x 2 + 6 x + 8 = ( x + ) ( x + ) ;
(2)应用:请用上述方法解方程: x 2 − 3 x − 4 = 0 .
某顾客在商场看中了甲、乙两种冰箱,其中甲冰箱的价格为2100元,日均耗电量为1度;乙冰箱是新节能产品,价格为2220元,日均耗电量为0.5度.若这两种冰箱的效果相同且甲冰箱可以打折但乙冰箱不打折,请你就价格方面计算说明,甲冰箱至少打几折时购买比较合算?(假设:每度电0.5元,两种冰箱的使用寿命均为10年,平均每年使用300天.)
解方程:.
如图,在平面直角坐标系中,四边形OABC的O点为坐标原点,A、C两点分别在y轴和x轴上,AB∥OC,OA=8,AB=24,OC=26,动点P从A开始沿AB边向点D以1个单位/s的速度运动,动点Q从C开始沿CO边向点O以3个单位/s的速度运动,P、Q分别从A、C同时出发,当一点到达时另一点也停止,设运动时间为t.(1)求直线BC的解析式;(2)当t为何值时,PQ∥CB?(3)是否存在t的值,使得PQ将四边形OABC的面积分成2:3两部分?若存在,求出t的值;若不存在,请说明理由.
如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连结EF与边CD相交于点G,连结BE与对角线AC相交于点H,AE=CF,BE=EG.(1)求证:EF∥AC;(2)求∠BEF大小;(3)求证:
如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?