数学“综合与实践”课中,老师带领同学们来到娄底市郊区,测算如图所示的仙女峰的高度,李红盛同学利用已学的数学知识设计了一个实践方案,并实施了如下操作:先在水平地面 A 处测得山顶 B 的仰角 ∠ BAC 为 38 . 7 ° ,再由 A 沿水平方向前进377米到达山脚 C 处,测得山坡 BC 的坡度为 1 : 0 . 6 ,请你求出仙女峰的高度(参考数据: tan 38 . 7 ° ≈ 0 . 8 )
浠水县某中学规划在校园内一块长36米,宽20米的矩形场地ABCD上修建三条同样宽的人行道,使其中两条与AB平行,另一条与AD平行,其余部分种草,(如图所示),若使每一块草坪的面积都为96平方米,则人行道的宽为多少米?
如图,在⊙O中,AB是直径, CD是弦,AB⊥CD。 (1)P是优弧CAD上一点(不与C、D重合),求证:∠CPD=∠COB; (2)点P在劣弧CD上(不与C、D重合)时,∠CPD与∠COB数量关系是什么?(直接写出答案)
△ABC在平面直角坐标系中的位置如图所示,A(-1,4),B(-2,2),C(0,1),将△ABC沿y轴翻折得到△A1B1C1,再将△A1B1C1绕点O旋转180°得到△A2B2C2.写出各点坐标。
已知关于x的方程x2-2(k-1) x +k2=0有两个实数根x1,x2. (1)求k的取值范围; (2)若,求k的值.
解方程: (1)x2-1=2(x+1) (2)y2+3y-2=0