如图,在三角形 ABC 中, AB = 6 , AC = BC = 5 ,以 BC 为直径作 ⊙ O 交 AB 于点 D ,交 AC 于点 G ,直线 DF 是 ⊙ O 的切线, D 为切点,交 CB 的延长线于点 E .
(1)求证: DF ⊥ AC ;
(2)求 tan ∠ E 的值.
如图,将小旗ACDB放于平面直角坐标系中,得到各顶点的坐标为A(﹣6,12),B(﹣6,0),C(0,6),D(﹣6,6).以点B为旋转中心,在平面直角坐标系内将小旗顺时针旋转90°. (1)画出旋转后的小旗A′C′D′B′; (2)写出点A′,C′,D′的坐标; (3)求出线段BA旋转到B′A′时所扫过的扇形的面积.
韦玲和覃静两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀. (1)请用列表法或树状图表示出所有可能出现的游戏结果; (2)求韦玲胜出的概率.
解方程:3(x+4)=x.
如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N. (1)求此抛物线的解析式; (2)求证:AO=AM; (3)探究: ①当k=0时,直线y=kx与x轴重合,求出此时的值; ②试说明无论k取何值,的值都等于同一个常数.
如图,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC于点E,BE交⊙O于点F,连接AF,AF的延长线交DE于点P. (1)求证:DE是⊙O的切线; (2)求tan∠ABE的值; (3)若OA=2,求线段AP的长.