某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.
(1)求甲、乙两种树苗每棵的价格各是多少元?
(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了 10 % ,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?
解分式方程:.
在平行四边形ABCD中,对角线AC和BD交于点O,AC=8.(1)如图1,若AB⊥AC,BD=12,点P是线段AD上的动点(不包含端点A,D),过点P作PE⊥AC,垂足为点E,PF⊥BD,垂足为点F,设PE=x,PF=y,求y与x的函数关系式并直接写出自变量x的取值范围;(2)如图2,若AE平分∠BAC,点F为BC中点,且点F保持在点E的右边,求线段BC的变化范围.
在平面直角坐标系中,直线y1=x+a和y2=﹣x+b交于点E(3,3),点P(m,n)在直线y1=x+a上,过点P(m,n)作x轴的垂线,交直线y2=﹣x+b于点F.(1)若n=2,求△PEF的面积;(2)若PF=2,求点P的坐标.
如图,四边形ABCD是菱形,CE⊥AB,垂足为点E,且CE交对角线BD于点F.若∠A=120°,四边形AEFD的面积为,求EF的值.
在平面直角坐标系中,点A,B的坐标分别为(4,0),(0,4),直线y=x+b和线段AB交于点D,DE⊥x轴,垂足为点E,DF⊥y轴,垂足为点F,记w=DF﹣DE,当1≤w≤2时,求b的取值范围.