如图,抛物线 y=ax2+bx−1(a≠0)经过 A(−1,0), B(2,0)两点,与 y轴交于点 C.
(1)求抛物线的解析式及顶点 D的坐标;
(2)点 P在抛物线的对称轴上,当 ΔACP的周长最小时,求出点 P的坐标;
(3)点 N在抛物线上,点 M在抛物线的对称轴上,是否存在以点 N为直角顶点的 RtΔDNM与 RtΔBOC相似?若存在,请求出所有符合条件的点 N的坐标;若不存在,请说明理由.
(本题6分)已知:如图,△ABC是等边三角形,D是AB边上的点,将DB绕点D顺时针旋转60°得到线段DE,延长ED交AC于点F,连结DC、AE.(1)求证:△ADE≌△DFC;(2)过点E作EH∥DC交DB于点G,交BC于点H,连结AH.求∠AHE的度数;(3)若BG=,CH=2,求BC的长.
(本题6分)列方程解应用题某商店销售一种食用油,已知进价为每桶40元,市场调查发现,若以每桶50元的价格销售,平均每天可以销售90桶油,若价格每升高1元,平均每天少销售3桶油,设每桶食用油的售价为x元(),商店每天销售这种食用油所获得的利润为y元.(1)用含有x的代数式分别表示出每桶油的利润与每天卖出食用油的桶数;(2)求y与x之间的函数关系式;(3)当每桶食用油的价格为55元时,可获得多少利润? (4)当每桶食用油的价格定为多少时,该商店一天销售这种食用油获得的利润最大?最大利润为多少?
(本题6分)已知关于的方程. (1)如果此方程有两个不相等的实数根,求m的取值范围;(2)在(1)中,若m为符合条件的最大整数,求此时方程的根.
(本小题满分6分)如图,在8×11的方格纸中,每个小正方形的边长均为1,△ABC的顶点均在小正方形的顶点处.(1)画出△ABC绕点A顺时针方向旋转90°得到的△;(2)求点B运动到点B′所经过的路径的长.
(本小题满分6分)如图,某人在点A处测量树高,点A到树的距离AD为21米,将一长为2米的标杆BE在与点A相距3米的点B处垂直立于地面,此时,观察视线恰好经过标杆顶点E及树的顶点C,求此树CD的高.