如图,抛物线 y = − x 2 + bx + c 交 x 轴于 A , B 两点,交 y 轴于点 C ,对称轴是直线 x = − 3 , B ( − 1 , 0 ) , F ( 0 , 1 ) ,请解答下列问题:
(1)求抛物线的解析式;
(2)直接写出抛物线顶点 E 的坐标,并判断 AC 与 EF 的位置关系,不需要说明理由.
注:抛物线 y = a x 2 + bx + c ( a ≠ 0 ) 的对称轴是直线 x = − b 2 a ,顶点坐标是 ( − b 2 a , 4 ac − b 2 4 a )
阅读下面的材料: 小明在学习中遇到这样一个问题:若1≤x≤m,求二次函数的最大值.他画图研究后发现,和时的函数值相等,于是他认为需要对进行分类讨论.他的解答过程如下: ∵二次函数的对称轴为直线, ∴由对称性可知,和时的函数值相等. ∴若1≤m<5,则时,的最大值为2; 若m≥5,则时,的最大值为. 请你参考小明的思路,解答下列问题: (1)当≤x≤4时,二次函数的最大值为_______; (2)若p≤x≤2,求二次函数的最大值; (3)若t≤x≤t+2时,二次函数的最大值为31,则的值为_______.
已知:△OBC内接于圆,圆与直角坐标系的x、y轴交于B、A两点,若∠BOC=45°,∠OBC=75°,A点坐标为(0,). 求:⑴B点的坐标; ⑵BC的长.
某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若以每箱50元价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱. (1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式; (2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式; (3)当每箱苹果的销售价为多少元时,可以获得最大利润?
图中是抛物线形拱桥,当水面宽为4米时,拱顶距离水面2米;当水面高度下降1米时,水面宽度为多少米?
如图,△ABC的三个顶点都在⊙O上,AP⊥BC于P,AM为⊙O的直径. 求证:∠BAM=∠CAP.