如图,在平面直角坐标系中, ΔABC 为等腰直角三角形, ∠ ACB = 90 ° ,抛物线 y = − x 2 + bx + c 经过 A , B 两点,其中点 A , C 的坐标分别为 ( 1 , 0 ) , ( − 4 , 0 ) ,抛物线的顶点为点 D .
(1)求抛物线的解析式;
(2)点 E 是直角三角形 ABC 斜边 AB 上的一个动点(不与 A , B 重合),过点 E 作 x 轴的垂线,交抛物线于点 F ,当线段 FE 的长度最大时,求点 E 的坐标;
(3)在(2)的条件下,抛物线上是否存在一点 P ,使 ΔPEF 是以 EF 为直角边的直角三角形?若存在,求出所有点 P 的坐标;若不存在,请说明理由.
王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示. (1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和; (2)试通过计算说明,哪个山上的杨梅产量较稳定?
解下列不等式组:
如图是一些小正方块所搭几何体的俯视图,小正方块中的数字表示该位置的小方块的个数,请画出这个几何体的主视图和左视图:
如图,在平面直角坐标系xOy中,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0)…直线ln⊥x轴于点(n,0).函数y=x的图象与直线l1,l2,l3,…ln分别交于点A1,A2,A3,…An,函数y=2x的图象与直线l1,l2,l3,…ln分别交于点B1,B2,B3,…Bn.如果△OA1B1的面积记为S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积记作S3,…四边形An-1AnBnBn-1的面积记作Sn,那么S2011=.
如图是一个等边三角形木框,甲虫P在边框AC上爬行(A,C端点除外),设甲虫P到另外两边的距离之和为d,等边三角形ABC的高为h,则d与h的大小关系是.