如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题: (1)△ABC的面积为 (2) 画出格点△ABC(顶点均在格点上)关于x轴对称的△ (3)指出△的顶点坐标.( , ), ( , ), ( , ) (4)在y轴上画出点Q,使最小。
解方程:.
计算:.
如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动。设动点运动时间为t秒。(1)求AD的长.(2)当△PDC的面积为15平方厘米时,求的值.(3)动点M从点C出发以每秒2厘米的速度在线段CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动。是否存在t,使得S△PMD=S△ABC?若存在,请求出t的值;若不存在,请说明理由.
阅读下面的情景对话,然后解答问题:(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?(直接给出结论,不必证明)(2)在Rt△ABC中,∠ACB=90°,AB=,AC=,BC=,且,若Rt△ABC是奇异三角形,求;
某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元。为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。求:(1)若商场平均每天要赢利1200元,且让顾客感到实惠,每件衬衫应降价多少元?(2)用配方法说明,每件衬衫降价多少元时,商场平均每天赢利最多,最多是多少?