如图,在 ΔABC 中, AB = AC , ∠ BAC = 120 ° ,点 D 在 BC 边上, ⊙ D 经过点 A 和点 B 且与 BC 边相交于点 E .
(1)求证: AC 是 ⊙ D 的切线;
(2)若 CE = 2 3 ,求 ⊙ D 的半径.
如图,在 A 处的正东方向有一港口 B .某巡逻艇从 A 处沿着北偏东 60 ° 方向巡逻,到达 C 处时接到命令,立刻在 C 处沿东南方向以20海里 / 小时的速度行驶3小时到达港口 B .求 A , B 间的距离. ( 3 ≈ 1 . 73 , 2 ≈ 1 . 41 , 6 ≈ 2 . 45 ,结果保留一位小数).
箱子里有4瓶牛奶,其中有一瓶是过期的.现从这4瓶牛奶中不放回地任意抽取2瓶.
(1)请用树状图或列表法把上述所有等可能的结果表示出来;
(2)求抽出的2瓶牛奶中恰好抽到过期牛奶的概率.
在平面直角坐标系中,矩形 ABCD 的顶点坐标为 A ( 0 , 0 ) , B ( 6 , 0 ) , C ( 6 , 8 ) , D ( 0 , 8 ) , AC , BD 交于点 E .
(1)如图(1),双曲线 y = k 1 x 过点 E ,直接写出点 E 的坐标和双曲线的解析式;
(2)如图(2),双曲线 y = k 2 x 与 BC , CD 分别交于点 M , N ,点 C 关于 MN 的对称点 C ' 在 y 轴上.求证 ΔCMN ~ ΔCBD ,并求点 C ' 的坐标;
(3)如图(3),将矩形 ABCD 向右平移 m ( m > 0 ) 个单位长度,使过点 E 的双曲线 y = k 3 x 与 AD 交于点 P .当 ΔAEP 为等腰三角形时,求 m 的值.
如图,五边形 ABCDE 内接于 ⊙ O , CF 与 ⊙ O 相切于点 C ,交 AB 延长线于点 F .
(1)若 AE = DC , ∠ E = ∠ BCD ,求证: DE = BC ;
(2)若 OB = 2 , AB = BD = DA , ∠ F = 45 ° ,求 CF 的长.
在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元.
(1)跳绳、毽子的单价各是多少元?
(2)该店在“五 · 四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1800元,该店的商品按原价的几折销售?