天水市“最美女教师”刘英为抢救两名学生,身负重伤.社会各界纷纷为她捐款,某校2000名学生也积极参加了此捐款活动.捐款金额有5元、10元、15元、20元、25元共五种.为了了解捐款情况,学校随机抽样调查了部分学生的捐款情况,并根据捐款金额和人数绘制了如下统计图(图①和图② ) .请根据所给信息解答下列问题.
(1)本次接受随机抽样调查的学生人数为 人,图①中 m 的值是 .
(2)根据样本数据,请估计该校在本次活动中捐款金额为10元的学生人数.
如图所示,在△ABC中,∠B=∠C,∠BAD=40°,并且∠ADE=∠AED,求∠CDE的度数.
如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.
解不等式组,并将解集在数轴上表示出来.
如图,已知直线与x轴交于点A,与y轴交于点C,抛物线经过点A和点C,对称轴为直线l:,该抛物线与x轴的另一个交点为B. (1)求此抛物线的解析式; (2)点P在直线l上,求出使△PAC的周长最小的点P的坐标; (3)点M在此抛物线上,点N在y轴上,以A、B、M、N为顶点的四边形能否为平行四边形?若能,直接写出所有满足要求的点M的坐标;若不能,请说明理由.
如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于点O,E为AC上一点,且AE=OC. (1)求证:AP=AO; (2)求证:PE⊥AO; (3)当AE=AC,AB=10时,求线段BO的长度.