如图,已知 ∠ CAB = ∠ DBA , ∠ CBD = ∠ DAC .
求证: BC = AD .
在Rt△ACB和Rt△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE. 特殊发现:如图1,若点E,F分别落在边AB,AC上,则结论:PC=PE成立(不要求证明). 问题探究:把图1中的△AEF绕着点A顺时针旋转. (1)如图2,若点E落在边CA的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由; (2)如图3,若点F落在边AB上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由; (3)记,当k为何值时,△CPE总是等边三角形?(请直接写出k的值,不必说明理由)
如图,菱形ABCD的对角线AC,BD相交于点O,点E,F分别是边AB,AD的中点. (1)请判断△OEF的形状,并证明你的结论; (2)若AB=13,AC=10,请求出线段EF的长.
如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达B点即停止运动,M,N分别是AD,CD的中点,连接MN,设点D运动的时间为t. (1)判断MN与AC的位置关系; (2)求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积; (3)若△DMN是等腰三角形,求t的值.
)如图,E,F分别是矩形ABCD的边AD,AB上的点,若EF=EC,且EF⊥EC. (1)求证:AE=DC; (2)已知DC=,求BE的长.
定义:底与腰的比是的等腰三角形叫做黄金等腰三角形. 如图,已知△ABC中,AB=BC,∠C=36°,BA1平分∠ABC交AC于A1. (1)=AA1•A C; (2)探究:△ABC是否为黄金等腰三角形?请说明理由;(提示:此处不妨设AC=1) (3)应用:已知AC=a,作A1B1∥AB交BC于B1,B1A2平分∠A1B1C交AC于A2,作A2B2∥AB交B2,B2A3平分∠A2B2C交AC于A3,作A3B3∥AB交BC于B3,…,依此规律操作下去,用含a,n的代数式表示An﹣1An.(n为大于1的整数,直接回答,不必说明理由)