如图,在平面直角坐标系中,直角 ΔABC 的三个顶点分别是 A ( − 3 , 1 ) , B ( 0 , 3 ) , C ( 0 , 1 )
(1)将 ΔABC 以点 C 为旋转中心旋转 180 ° ,画出旋转后对应的△ A 1 B 1 C 1 ;
(2)分别连接 A B 1 、 B A 1 后,求四边形 A B 1 A 1 B 的面积.
已知关于的一元二次方程有两个实数根和.(1)求实数的取值范围;(2)当时,求的值.
解下列方程(每小题3分,共9分)(1) (2) (3)
如图1,已知矩形纸片ABCD中,AB=6cm,若将该纸片沿着过点B的直线折叠(折痕为BM),点A恰好落在CD边的中点P处. (1)求矩形ABCD的边AD的长. (2)若P为CD边上的一个动点,折叠纸片,使得A与P重合,折痕为MN,其中M在边AD上,N在边BC上,如图2所示.设DP=x cm,DM=y cm,试求y与x的函数关系式,并指出自变量x的取值范围. (3)①当折痕MN的端点N在AB上时,求当△PCN为等腰三角形时x的值; ②当折痕MN的端点M在CD上时,设折叠后重叠部分的面积为S,试求S与x之间的函数关系式
如图,二次函数y=a+bx+c的图象交x轴于A、B两点,交y轴于点C.且B(1,0),若将△BOC绕点O逆时针旋转90°,所得△DOE的顶点E恰好与点A重合,且△ACD的面积为3.(1)求这个二次函数的关系式.(2)设这个二次函数图象的顶点为M,请在y轴上找一点P,使得△PAM的周长最小,并求出点P的坐标.(3)设这个函数图象的对称轴l交x轴于点N,问:A、M、C、D、N这5个点是否会在同一个圆上?若在同一个圆上,请求出这个圆的圆心坐标,并作简要说明;若不可能,请说明理由.
为了调动同学们的学习积极性,某班班主任陈老师在班级管理中采用了奖励机制,每次期中期末考试后都会进行表彰奖励.期中考试后,陈老师花了300元购买甲、乙两种奖品用于奖励进步显著学生及成绩特别优秀学生.期末考试后,陈老师再次去购买奖品时,发现甲奖品每件上涨了6元,乙奖品每件上涨了12元,结果购买相同数量的甲、乙两种奖品却多花了120元.设陈老师每次购买甲奖品x件,乙奖品y件. (1)请直接写出y与x之间的函数关系式: . (2)若x=8,且这两种奖品不再调价.若陈老师再次去购买奖品,且所买甲奖品比前两次都少1件,则他最多买几件乙奖品,才能把奖品总费用控制在300元以内? 【备注:已知陈老师第一次购买奖品发现,甲奖品比乙奖品便宜,两种奖品单价(元)都在30以内且为偶数.】