某商店购买60件 A 商品和30件 B 商品共用了1080元,购买50件 A 商品和20件 B 商品共用了880元.
(1) A 、 B 两种商品的单价分别是多少元?
(2)已知该商店购买 B 商品的件数比购买 A 商品的件数的2倍少4件,如果需要购买 A 、 B 两种商品的总件数不少于32件,且该商店购买的 A 、 B 两种商品的总费用不超过296元,那么该商店有哪几种购买方案?
(内江)如图,抛物线与x轴交于点A(,0)、点B(2,0),与y轴交于点C(0,1),连接BC.(1)求抛物线的函数关系式;(2)点N为抛物线上的一个动点,过点N作NP⊥x轴于点P,设点N的横坐标为t(),求△ABN的面积S与t的函数关系式;(3)若且时△OPN∽△COB,求点N的坐标.
(达州)如图,在平面直角坐标系中,四边形ABCD是菱形,B.O在x轴负半轴上,AO=,tan∠AOB=,一次函数的图象过A、B两点,反比例函数的图象过OA的中点D.(1)求一次函数和反比例函数的表达式;(2)平移一次函数的图象,当一次函数的图象与反比例函数的图象无交点时,求b的取值范围.
(达州)阅读与应用:阅读1:a、b为实数,且a>0,b>0,因为,所以从而(当a=b时取等号). 阅读2:若函数;(m>0,x>0,m为常数),由阅读1结论可知:,所以当,即时,函数的最小值为. 阅读理解上述内容,解答下列问题: 问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(),求当x= 时,周长的最小值为 ; 问题2:已知函数()与函数(), 当x= 时,的最小值为 ; 问题3:某民办学校每天的支出总费用包含以下三个部分:一是教职工工资4900元;二是学生生活费成本每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.01.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)
(达州)(本题12分)如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,∠AOC的平分线交AB于点D,E为BC的中点,已知A(0,4)、C(5,0),二次函数的图象经过A、C两点.(1)求该二次函数的表达式;(2)F、G分别为x轴、y轴上的动点,首尾顺次连结D、E、F、G构成四边形DEFG,求四边形DEFG周长的最小值;(3)抛物线上是否存在点P,使△ODP的面积为12?若存在,求出点P的坐标;若不存在,请说明理由.
(南充)反比例函数()与一次函数交于点A(1,).(1)求反比例函数的解析式;(2)若一次函数与x轴交于点B,且△AOB的面积为3,求一次函数的解析式.