如图,在一条笔直的东西向海岸线 l 上有一长为 1 . 5 km 的码头 MN 和灯塔 C ,灯塔 C 距码头的东端 N 有 20 km .一轮船以 36 km / h 的速度航行,上午 10 : 00 在 A 处测得灯塔 C 位于轮船的北偏西 30 ° 方向,上午 10 : 40 在 B 处测得灯塔 C 位于轮船的北偏东 60 ° 方向,且与灯塔 C 相距 12 km .
(1)若轮船照此速度与航向航行,何时到达海岸线?
(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由.(参考数据: 2 ≈ 1 . 4 , 3 ≈ 1 . 7 )
设等式在实数范围内成立,其中,,是两两不同的实数,求。
如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB. (1)求证:直线BF是⊙O的切线; (2)若AB=5,sin∠CBF=,求BC和BF的长.
先化简再求值其中
化简:.
先化简。再求值:,其中。