如图,在一条笔直的东西向海岸线 l 上有一长为 1 . 5 km 的码头 MN 和灯塔 C ,灯塔 C 距码头的东端 N 有 20 km .一轮船以 36 km / h 的速度航行,上午 10 : 00 在 A 处测得灯塔 C 位于轮船的北偏西 30 ° 方向,上午 10 : 40 在 B 处测得灯塔 C 位于轮船的北偏东 60 ° 方向,且与灯塔 C 相距 12 km .
(1)若轮船照此速度与航向航行,何时到达海岸线?
(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由.(参考数据: 2 ≈ 1 . 4 , 3 ≈ 1 . 7 )
计算:
已知抛物线经过点A(,0)、B(m,0)(m>0),且与y轴交于点C. ⑴求a、b的值(用含m的式子表示)⑵如图所示,⊙M过A、B、C三点,求阴影部分扇形的面积S(用含m的式子表示);⑶在x轴上方,若抛物线上存在点P,使得以A、B、P为顶点的三角形与相似,求m的值
为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量(万件)与销售单价(元)之间的函数关系如图所示.(1)求月销售量(万件)与销售单价(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额-生产成本-员工工资-其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?
已知△ABC ,D、E、F分别是AB、AC、BC上的点。且DE∥BC, EF∥AB.求证:
已知如图,AB和DE是直立在地面上的两根立柱,AB=10m,某一时刻AB在太阳光下的投影BC=6m.(1)请你在图中画出此时DE在阳光下的投影.(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为3m,计算DE的长.