如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 ⊙ O 与边 BC , AC 分别交于 D , E 两点,过点 D 作 DH ⊥ AC 于点 H .
(1)判断 DH 与 ⊙ O 的位置关系,并说明理由;
(2)求证: H 为 CE 的中点;
(3)若 BC = 10 , cos C = 5 5 ,求 AE 的长.
关于x的方程有两个不相等的实数根, (1)求k的取值范围; (2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值,若不存在,说明理由.
如图,Rt△ABO的顶点A是双曲线y=与直线y=-x-(k+1)在第二象限的交点.AB⊥x轴于B,且.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.并根据图像写出:(3)方程的解;(4)使一次函数的值大于反比例函数的值的的取值范围;
某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元。(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?
在⊿ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形,求证:四边形ADCE是矩形
折叠矩形ABCD的一边AD, 折痕为AE, 且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。求点F和点E坐标。