图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段 AC的两个端点均在小正方形的顶点上.
(1)如图1,点 P在小正方形的顶点上,在图1中作出点 P关于直线 AC的对称点 Q,连接 AQ、 QC、 CP、 PA,并直接写出四边形 AQCP的周长;
(2)在图2中画出一个以线段 AC为对角线、面积为6的矩形 ABCD,且点 B和点 D均在小正方形的顶点上.
中秋节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售. 九(1)班数学建模兴趣小组根据调查,整理出第x天()的捕捞与销售的相关信息如下:
(1)在此期间该养殖场每天的捕捞量与前一天的捕捞量相比是如何变化的? (2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(元)之间的函数关系式;(当天收入=日销售额日捕捞成本) (3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?
已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.连接BD,AE⊥BD,垂足为E. (1)求证:△ABE∽△DBC; (2)求线段AE的长.
已知一次函数的图象与反比例函数的图象相交,其中一个交点的纵坐标为6. (1)求两个函数的解析式; (2)若已知另一点的横坐标为,结合图象求出时x的取值范围.
已知二次函数的图像经过点(0,-4),且当x=2,有最大值—2。求该二次函数的关系式:
某数学兴趣小组开展了一次课外活动,过程如下:如图1,正方形ABCD中,AB=6,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q. (1)求证:DP=DQ; (2)如图2,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明; (3)如图3,固定三角板直角顶点在D点不动,转动三角板,使三角板的一边交AB的延长线于点P,另一边交BC的延长线于点Q,仍作∠PDQ的平分线DE交BC延长线于点E,连接PE,若AB:AP=3:4,请帮小明算出△DEP的面积.