已知抛物线 y = x 2 + ( 2 m + 1 ) x + m ( m - 3 ) (m为常数, ﹣ 1 ≤ m ≤ 4 ) 。 A (﹣ m - 1 , y 1 ) , B m 2 , y 2 , C (﹣ m , y 3 ) 是该抛物线上不同的三点,现将抛物线的对称轴绕坐标原点O逆时针旋转90°得到直线a,过抛物线顶点P作 PH ⊥ a 于H.
(1)用含m的代数式表示抛物线的顶点坐标;
(2)若无论m取何值,抛物线与直线 y = x - km (k为常数)有且仅有一个公共点,求k的值;
(3)当 1 < PH ≤ 6 时,试比较y1,y2,y3之间的大小.
已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC, (1)证明ABDF是平行四边形; (2)若AF=DF=5,AD=6,求AC的长.
在某市地铁施工期间,交管部门在施工路段设立了矩形路况警示牌(如图所示).已知立杆的高度是米,从路侧点处测得路况警示牌顶端点和底端点的仰角分别是和,求路况警示牌宽的值.(精确到0.1米)(参考数据:≈1.41,≈1.73)
为了决定谁将获得仅有的一张科普报告入场劵,甲和乙设计了如下的摸球游戏:在不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其它没有任何区别,摸球之前将袋内的小球搅匀,甲先摸两次,每次摸出一个球(第一次摸后不放回),把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球,如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分,如果乙摸出的球是白色,乙得1分,否则乙得0分,得分高的获得入场卷,如果得分相同,游戏重来. (1)运用列表或画树状图求甲得1分的概率; (2)请你用所学的知识说明这个游戏是否公平?
2015年3月2日云南临沧沧源发生级地震,牵动着全国人民的心,地震后某中学举行了爱心捐款活动,下图是该校九年级某班学生为沧源灾区捐款情况绘制的不完整的条形统计图和扇形统计图. (1)求该班人数; (2)补全条形统计图; (3)在扇形统计图中,捐款“元人数”所在扇形的圆心角的度数; (4)若该校九年级有人,据此样本,请你估计该校九年级学生共捐款多少元?
如图,已知在平面直角坐标系xoy中,O是坐标原点,点A(2,5)在反比例函数y=的图象上,过点A的直线y=x+b交x轴于点B. (1)求k和b的值; (2)求△AOB的面积.