如图,在平面直角坐标系中,矩形 OCAB( OC> OB)的对角线长为5,周长为14.若反比例函数 y= m x 的图象经过矩形顶点 A.
(1)求反比例函数解析式;若点(﹣ a, y 1)和( a+1, y 2)在反比例函数的图象上,试比较 y 1与 y 2的大小;
(2)若一次函数 y= kx+ b的图象过点 A并与 x轴交于点(﹣1,0),求出一次函数解析式,并直接写出 kx+ b﹣ m x <0成立时,对应 x的取值范围.
如图,在平面直角坐标系中,A是抛物线y=x2上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(0,6),直线AB交x轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为a,△BED的面积为S.(1)当a=时,求S的值.(2)求S关于a(a≠)的函数解析式.
如图1,已知在平行四边形ABCD中,AB=10,BC=16,sinB=,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求CG的长.
如图,已知等边△ABC,AB=16,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.(1)求证:DF是⊙O的切线;(2)求FG的长;(3)求tan∠FGD的值.
受国内外复杂多变的经济环境影响,去年1至7月,原材料价格一路攀升,某服装厂每件衣服原材料的成本(元)与月份x(1≤x≤7,且x为整数)之间的函数关系如下表:
8至12月,随着经济环境的好转,原材料价格的涨势趋缓,每件原材料成本(元)与月份x的函数关系式为=x+74(8≤x≤12,且x为整数). (1) 请观察表格中的数据,用学过的函数相关知识求与x的函数关系式. (2) 若去年该衣服每件的出厂价为105元,生产每件衣服的其他成本为8元,该衣服在1至7月的销售量(万件)与月份x满足关系式=0.1x+1.1(1≤x≤7,且x为整数); 8至12月的销售量(万件)与月份x满足关系式=-0.1x+3(8≤x≤12,且x为整数),该厂去年哪个月利润最大?并求出最大利润.
如图,在平面直角坐标系中,Rt△PBD的斜边PB落在y轴上,tan∠BPD=.延长BD交轴于点C,过点D作DA⊥轴,垂足为A,PD与轴交于点E,OA=8,OB=6.(1)求点C的坐标;(2)若点D在反比例函数y =(k>0)的图象上,求反比例函数的解析式.