在一次综合实践活动中,小明要测某地一座古塔 AE的高度.如图,已知塔基顶端 B(和 A、 E共线)与地面 C处固定的绳索的长 BC为80 m.她先测得∠ BCA=35°,然后从 C点沿 AC方向走30 m到达 D点,又测得塔顶 E的仰角为50°,求塔高 AE.(人的高度忽略不计,结果用含非特殊角的三角函数表示)
已知-=,求的值.
阅读下列材料,你能得到什么结论?并利用(1)的结论分解因式.(1)形如x2+(p+q)x+pq型的二次三项式,有以下特点:①二次项系数是1;②常数项是两个数之积;③一次项系数是常数项的两个因数之和,把这个二次三项式进行分解因式,可以这样来解:x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)=x(x+p)+q(x+p)=(x+p)(x+q).因此,可以得x2+(p+q)x+pq=________.利用上面的结论,可以直接将某些二次项系数为1的二次三项式分解因式.(2)利用(1)的结论分解因式:①m2+7m-18;②x2-2x-15.
已知+=(a≠b),求-的值.
先化简,再求值:÷(x+1)其中x=.
先化简、再求值÷,其中x=+1.