如图,一次函数 y=﹣ 3 3 x+1的图象与 x轴、 y轴分别交于点 A、 B,以线段 AB为边在第一象限作等边△ ABC.
(1)若点 C在反比例函数 y= k x 的图象上,求该反比例函数的解析式;
(2)点 P(2 3 , m)在第一象限,过点 P作 x轴的垂线,垂足为 D,当△ PAD与△ OAB相似时, P点是否在(1)中反比例函数图象上?如果在,求出 P点坐标;如果不在,请加以说明.
为了进一步推进海南国际旅游岛建设,海口市自2012年4月1日起实施《海口市 奖励旅行社开发客源市场暂行办法》,第八条规定:旅行社引进会议规模达到200人以上,入住本市A类 旅游饭店,每次会议奖励2万元;入住本市B类旅游饭店,每次会议奖励1万元。某旅行社5月份引进符 合奖励规定的会议18次,得到28万元奖金.求此旅行社符合奖励规定的入住A类和B类旅游饭店的会议各多少次。
(1)计算:; (2)解不等式组:.
如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0. (1)求抛物线的解析式. (2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动. ①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围. ②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°. (1)求∠B的大小; (2)已知AD=6求圆心O到BD的距离.
我市某中学为推进素质教育,在七年级设立了六个课外兴趣小组,下面是六个兴趣小组的频数分布直方图和扇形统计图,请根据图中提供的信息回答下列问题: (1)七年级共有 人; (2)计算扇形统计图中“体育”兴趣小组所对应的扇形圆心角的度数; (3)求“从该年级中任选一名学生,是参加科技小组学生”的概率.