如图,海中有一个小岛 A ,它周围10海里内有暗礁,渔船跟踪鱼群由东向西航行,在 B 点测得小岛 A 在北偏西 60 ° 方向上,航行12海里到达 C 点,这时测得小岛 A 在北偏西 30 ° 方向上,如果渔船不改变方向继续向西航行,有没有触礁的危险?并说明理由.(参考数据: 3 ≈ 1 . 73 )
如图,已知△ABC的三个顶点的坐标分别为A(-2,3)、B(-6,0)、C(-1,0). (1)画出△ABC,关于原点对称的三角形△A′B′C′; (2)将三角形A、B、C绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标; (3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.
化简求值:,其中a=,b=-3.
(1)解不等式组 (2)分解因式:m2(m-1)-4(1-m)2.
如图,矩形OABC摆放在平面直角坐标系xOy中,点A在x轴上,点C在y轴上,OA=3,OC=2,P是BC边上一点且不与B重合,连结AP,过点P作∠CPD=∠APB,交x轴于点D,交y轴于点E,过点E作EF∥AP交x轴于点F. (1)若△APD为等腰直角三角形,求点P的坐标; (2)若以A,P,E,F为顶点的四边形是平行四边形,求直线PE的解析式.
甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题. (1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒; (2)求乙跑步的速度及乙在途中等候甲的时间; (3)求乙出发多长时间第一次与甲相遇?