为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如图统计图.
(1)本次抽样调查的样本容量是 ;
(2)补全条形统计图;
(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.
如图1,在中,,,,另有一等腰梯形()的底边与重合,两腰分别落在AB、AC上,且G、F分别是AB、AC的中点.直接写出△AGF与△ABC的面积的比值;操作:固定,将等腰梯形以每秒1个单位的速度沿方向向右运动,直到点与点重合时停止.设运动时间为秒,运动后的等腰梯形为(如图2).①探究1:在运动过程中,四边形能否是菱形?若能,请求出此时的值;若不能,请说明理由.②探究2:设在运动过程中与等腰梯形重叠部分的面积为,求与的函数关系式.
如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).求抛物线的解析式及其顶点D的坐标设直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,在坐标平面内找一点G,使以点G、F、C为顶点的三角形与△COE相似,请直接写出符合要求的,并在第一象限的点G的坐标;在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由;将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?
如图,在菱形ABCD中,AB=2cm,∠BAD=60°,E为CD边中点,点P从点A开始沿AC方向以每秒cm的速度运动,同时,点Q从点D出发沿DB方向以每秒1cm的速度运动,当点P到达点C时,P,Q同时停止运动,设运动的时间为x秒.当点P在线段AO上运动时.①请用含x的代数式表示OP的长度;②若记四边形PBEQ的面积为y,求y关于x的函数关系式(不要求写出自变量的取值范围)显然,当x=0时,四边形PBEQ即梯形ABED,请问,当P在线段AC的其他位置时,以P,B,E,Q为顶点的四边形能否成为梯形?若能,求出所有满足条件的x的值;若不能,请说明理由.
如图,抛物线交轴于A、B两点(A点在B点左侧),交轴于点C,已知B(8,0),,△ABC的面积为8.求抛物线的解析式;若动直线EF(EF∥轴)从点C开始,以每秒1个长度单位的速度沿轴负方向平移,且交轴、线段BC于E、F两点,动点P同时从点B出发,在线段OB上以每秒2个单位的速度向原点O运动。连结FP,设运动时间秒。当为何值时,的值最大,并求出最大值;在满足(2)的条件下,是否存在的值,使以P、B、F为顶点的三角形与△ABC相似。若存在,试求出的值;若不存在,请说明理由。
如图,P为正方形ABCD的对称中心,正方形ABCD的边长为,。直线OP交AB于N,DC于M,点H从原点O出发沿x轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿OM方向以个单位每秒速度运动,运动时间为t。求:分别写出A、C、D、P的坐标;当t为何值时,△ANO与△DMR相似?△HCR面积S与t的函数关系式;并求以A、B、C、R为顶点的四边形是梯形时t的值及S的最大值。