某企业接到生产一批设备的订单,要求不超过12天完成.这种设备的出厂价为1200元 / 台,该企业第一天生产22台设备,第二天开始,每天比前一天多生产2台.若干天后,每台设备的生产成本将会增加,设第 x 天 ( x 为整数)的生产成本为 m (元 / 台), m 与 x 的关系如图所示.
(1)若第 x 天可以生产这种设备 y 台,则 y 与 x 的函数关系式为 y = 2 x + 20 , x 的取值范围为 ;
(2)第几天时,该企业当天的销售利润最大?最大利润为多少?
(3)求当天销售利润低于10800元的天数.
已知a+b=5,ab=6.求下列各式的值(1)(2)(a-b)2
解方程:(x+2)2+(x-4)(x+4)=(2x-1)(x+4)
如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.
(1)(2x3y)3(-2xy)(2)(a-2b)(a2-3ab+b2)(3)(-3×105)·(7×104)·(-2×103)2(4)
已知直线与x轴、y轴分别交于A、B两点,∠ABC=60°,BC与x轴交于C.(1)求直线BC的解析式;(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发沿C-B-A向点A运动(不与C、A重合),动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,当t=4秒时,y轴上有一点M,平面内是否存在一点N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存在,请说明理由.