我市一家电子计算器专卖店每只进价13元,售价20元,为了扩大销售,该店现规定,凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按照每只19元计算,但是最低价为每只16元。问一次卖多少只获得的利润为120元?
如图,在平行四边形 ABCD 中, P 是对角线 BD 上的一点,过点 C 作 CQ / / DB ,且 CQ = DP ,连接 AP 、 BQ 、 PQ .
(1)求证: ΔAPD ≅ ΔBQC ;
(2)若 ∠ ABP + ∠ BQC = 180 ° ,求证:四边形 ABQP 为菱形.
2017年9月,我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读,某校对 A 《三国演义》、 B 《红楼梦》、 C 《西游记》、 D 《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:
(1)本次一共调查了 名学生;
(2)请将条形统计图补充完整;
(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.
如图,已知抛物线 y = a x 2 + bx + c ( a ≠ 0 ) 的对称轴为直线 x = − 1 ,且抛物线与 x 轴交于 A 、 B 两点,与 y 轴交于 C 点,其中 A ( 1 , 0 ) , C ( 0 , 3 ) .
(1)若直线 y = mx + n 经过 B 、 C 两点,求直线 BC 和抛物线的解析式;
(2)在抛物线的对称轴 x = − 1 上找一点 M ,使点 M 到点 A 的距离与到点 C 的距离之和最小,求出点 M 的坐标;
(3)设点 P 为抛物线的对称轴 x = − 1 上的一个动点,求使 ΔBPC 为直角三角形的点 P 的坐标.
如图,在 ΔABC 中, AB = AC , O 为 BC 的中点, AC 与半圆 O 相切于点 D .
(1)求证: AB 是半圆 O 所在圆的切线;
(2)若 cos ∠ ABC = 2 3 , AB = 12 ,求半圆 O 所在圆的半径.
某电视台为了解本地区电视节目的收视情况,对部分市民开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了两幅不完整的统计图(如图所示),根据要求回答下列问题:
(1)本次问卷调查共调查了 名观众;图②中最喜爱“新闻节目”的人数占调查总人数的百分比为 ;
(2)补全图①中的条形统计图;
(3)现有最喜爱“新闻节目”(记为 A ) ,“体育节目”(记为 B ) ,“综艺节目”(记为 C ) ,“科普节目”(记为 D ) 的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“ B ”和“ C ”两位观众的概率.