(本题满分14分,其中第(1)、(2)小题各4分,第(3)小题6分)已知:如图,在平面直角坐标系xOy中,二次函数的图像经过点A(-1,1)和点B(2,2),该函数图像的对称轴与直线OA、OB分别交于点C和点D.(1)求这个二次函数的解析式和它的对称轴;(2)求证:∠ABO=∠CBO;(3)如果点P在直线AB上,且△POB与△BCD相似,求点P的坐标.
如图,在△ABD和△ACE中,有下列四个等式:①AB="AC" ②AD="AE" ③∠1=∠2 ④BD=CE.请你以其中三个等式作为题设,余下的作为结论,写出一个真命题(要求写出已知,求证及证明过程)
把矩形ABCD以对角线AC为折痕折叠(如图所示),设 AF交DC于点E。 求证:DE = FE
如图是由两个等边三角形(不全等)组成的图形。请你移动其中的一个三角形,使它与另一个三角形组成轴对称图形,并且所构成的图形有尽可能多的对称轴。画出你所构成的图形,它有几条对称轴?
因式分解
化简并计算: ,其中 ,。