如图,在平面直角坐标系中,ΔABC的三个顶点分别是A(1,3),B(4,4),C(2,1).
(1)把ΔABC向左平移4个单位后得到对应的△A1B1C1,请画出平移后的△A1B1C1;
(2)把ΔABC绕原点O旋转180°后得到对应的△A2B2C2,请画出旋转后的△A2B2C2;
(3)观察图形可知,△A1B1C1与△A2B2C2关于点( , )中心对称.
如右图,正方形ABCD,E是CD上的一点,△ADE旋转后能与△ABF重合,请指出旋转中心和旋转角,并判断△AEF的形状。
如右图,△ABC中,AB=AC,绕某点在△ABC所在平面内旋转△ABC,旋转所得图形与原图形一起恰好成一菱形。画出旋转得到的图形,指出旋转中心、旋转角。(不写作法)
列一元二次方程解下列应用题(每小题6分,共18分) (1)已知两个正方形的面积之和为89,周长之差为12, 求这两个正方形的边长。 (2)有一人患了流感,经两轮传染后共有144人患了这种疾病,每轮传染中平均一个人传染了几人? (3)据有关部门统计,我省农作物秸秆资源巨大,但合理利用量十分有限,2009年利用率只有30℅,大部分秸秆被直接焚烧,假定我省产生的农作物秸秆总量不变,且合理利用量的增长率相同,要使2011年的利用率提高到60℅,求每年的增长率。(可能用到的数据:)
解下列一元二次方程 (1) (2) (3) (4)
已知等腰梯形的上底是cm,下底是cm,高是cm,求它的周长和面积。