如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,-2),点A的坐标是(2,0),P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E,抛物线的对称轴是直线x=-1.
(1)求抛物线的函数表达式;
(2)若点P在第二象限内,且PE=14OD,求ΔPBE的面积.
(3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使ΔBDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.
学校举行数学知识竞赛,设立了一、二、三等奖,计划共购买45件奖品,其中二等奖奖品件数比一等奖奖品件数的2倍还少5件,已知购买一等奖奖品x件.各种奖品的单价如下表:
(1)学校购买二等奖奖品 件,三等奖奖品 件;(用含x的代数式表示)(2)若购买三等奖奖品的费用不超过二等奖奖品的费用的2倍,学校为节省开支,应如何购买这三种奖品?总费用最少是多少元?
“低碳环保,你我同行”,两年来,南京市区的公共自行车给市民出行带来切实方便,电视台记者在某区街头随机选取了市民进行调查,调查的问题是“您大概多九使用一次公共自行车?”,将本次调查结果归为四种情况:A 每天都用;B 经常使用;C 偶尔使用;D 从未使用.将这次调查情况整理并绘制如下两幅统计图:根据图中的信息,解答下列问题:(1)本次活动共有 位市民参与调查;(2)补全条形统计图;(3)根据统计结果,若该区有46万市民,请估算每天都用公共自行车的市民约有多少人?
在不透明的袋子中有四张标着数字1,2,3,4 的卡片,这些卡片除数字外都相同.甲同学按照一定的规则抽出两张卡片,并把卡片上的数字相加.如图是他所画的树状图的一部分.(1)由如图分析,甲同学的游戏规则是:从袋子中随机抽出一张卡片后 (填“放回”或“不放回”),再随机抽出一张卡片;(2)帮甲同学完成树状图;(3)求甲同学两次抽到的数字之和为偶数的概率.
如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形,(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.
先化简:,再选取一个恰当的x的值代入求值.