如图,已知直线AB与抛物线C:y=ax2+2x+c相交于点A(-1,0)和点B(2,3)两点.
(1)求抛物线C函数表达式;
(2)若点M是位于直线AB上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,求此时平行四边形MANB的面积S及点M的坐标;
(3)在抛物线C的对称轴上是否存在定点F,使抛物线C上任意一点P到点F的距离等于到直线y=174的距离?若存在,求出定点F的坐标;若不存在,请说明理由.
(1)【操作发现】
如图1,将△ ABC绕点 A顺时针旋转60°,得到△ ADE,连接 BD,则∠ ABD= 度.
(2)【类比探究】
如图2,在等边三角形 ABC内任取一点 P,连接 PA, PB, PC,求证:以 PA, PB, PC的长为三边必能组成三角形.
(3)【解决问题】
如图3,在边长为 7 的等边三角形 ABC内有一点 P,∠ APC=90°,∠ BPC=120°,求△ APC的面积.
(4)【拓展应用】
如图4是 A, B, C三个村子位置的平面图,经测量 AC=4, BC=5,∠ ACB=30°, P为△ ABC内的一个动点,连接 PA, PB, PC.求 PA+ PB+ PC的最小值.
如图①,直线 y= 1 2 x﹣3与 x轴、 y轴分别交于点 B, C,抛物线 y= 1 4 x 2 + bx+ c过 B, C两点,且与 x轴的另一个交点为点 A,连接 AC.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点 D(与点 A不重合),使得 S △ DBC= S △ ABC,若存在,求出点 D的坐标;若不存在,请说明理由;
(3)有宽度为2,长度足够长的矩形(阴影部分)沿 x轴方向平移,与 y轴平行的一组对边交抛物线于点 P和点 Q,交直线 CB于点 M和点 N,在矩形平移过程中,当以点 P, Q, M, N为顶点的四边形是平行四边形时,求点 M的坐标.
牧民巴特尔在生产和销售某种奶食品时,采取客户先网上订购,然后由巴特尔付费选择甲或乙快递公司送货上门的销售方式,甲快递公司运送2千克,乙快递公司运送3千克共需运费42元:甲快递公司运送5千克,乙快递公司运送4千克共需运费70元.
(1)求甲、乙两个快递公司每千克的运费各是多少元?
(2)假设巴特尔生产的奶食品当日可以全部出售,且选择运费低的快递公司运送,若该产品每千克的生产成本 y 1元(不含快递运费),销售价 y 2元与生产量 x千克之间的函数关系式为: y 1= - 2 x + 58 ( 0 < x < 13 ) 42 ( x ≥ 8 ) , y 2=﹣6 x+120(0< x<13),则巴特尔每天生产量为多少千克时获得利润最大?最大利润为多少元?
如图,⊙ O是△ ABC的外接圆, AC是直径,弦 BD= BA, EB⊥ DC,交 DC的延长线于点 E.
(1)求证: BE是⊙ O的切线;
(2)当sin∠ BCE= 3 4 , AB=3时,求 AD的长.
王阿姨家的阳台上放置了一个晾衣架,完全稳固张开如图①.图②,③是晾衣架的侧面展开图,△ AOB是边长为130 cm的等边三角形,晾衣架 OE, OF能以 O为圆心转动,且 OE= OF=130 cm:在 OA, OB上的点 C, D处分别有支撑杆 CN, DM能以 C, D为圆心转动.
(1)如图②,若 EF平行于地面 AB,王阿姨的衣服穿在衣架上的总长度是110 cm,垂挂在晾衣杆 OE上是否会拖到地面上?说明理由.
(2)如图③,当支撑杆 DM支到点 M′,此时∠ EOB=78°,点 E离地面距离最大.保证衣服不拖到地面上,衣服穿在衣架上的总长度最长约为多少厘米?(结果取整)参考数据:( 3 ≈ 17 10 ,sin78°≈ 49 50 ,cos78°≈ 1 5 ,sin18°≈ 3 10 ,cos18°≈ 19 20 )