某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?
如果三角形的两个内角 α 与 β 满足 2 α + β = 90 ° ,那么我们称这样的三角形为“准互余三角形”.
(1)若 ΔABC 是“准互余三角形”, ∠ C > 90 ° , ∠ A = 60 ° ,则 ∠ B = ° ;
(2)如图①,在 Rt Δ ABC 中, ∠ ACB = 90 ° , AC = 4 , BC = 5 .若 AD 是 ∠ BAC 的平分线,不难证明 ΔABD 是“准互余三角形”.试问在边 BC 上是否存在点 E (异于点 D ) ,使得 ΔABE 也是“准互余三角形”?若存在,请求出 BE 的长;若不存在,请说明理由.
(3)如图②,在四边形 ABCD 中, AB = 7 , CD = 12 , BD ⊥ CD , ∠ ABD = 2 ∠ BCD ,且 ΔABC 是“准互余三角形”,求对角线 AC 的长.
某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.
(1)当每件的销售价为52元时,该纪念品每天的销售数量为 件;
(2)当每件的销售价 x 为多少时,销售该纪念品每天获得的利润 y 最大?并求出最大利润.
如图, AB 是 ⊙ O 的直径, AC 是 ⊙ O 的切线,切点为 A , BC 交 ⊙ O 于点 D ,点 E 是 AC 的中点.
(1)试判断直线 DE 与 ⊙ O 的位置关系,并说明理由;
(2)若 ⊙ O 的半径为2, ∠ B = 50 ° , AC = 4 . 8 ,求图中阴影部分的面积.
为了计算湖中小岛上凉亭 P 到岸边公路 l 的距离,某数学兴趣小组在公路 l 上的点 A 处,测得凉亭 P 在北偏东 60 ° 的方向上;从 A 处向正东方向行走200米,到达公路 l 上的点 B 处,再次测得凉亭 P 在北偏东 45 ° 的方向上,如图所示.求凉亭 P 到公路 l 的距离.(结果保留整数,参考数据: 2 ≈ 1 . 414 , 3 ≈ 1 . 732 )
如图,在平面直角坐标系中,一次函数 y = kx + b 的图象经过点 A ( − 2 , 6 ) ,且与 x 轴相交于点 B ,与正比例函数 y = 3 x 的图象相交于点 C ,点 C 的横坐标为1.
(1)求 k 、 b 的值;
(2)若点 D 在 y 轴负半轴上,且满足 S ΔCOD = 1 3 S ΔBOC ,求点 D 的坐标.