如图, 一座钢结构桥梁的框架是ΔABC,水平横梁BC长 18 米, 中柱AD高 6 米, 其中D是BC的中点, 且AD⊥BC.
(1) 求sinB的值;
(2) 现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长 .
如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=900,且EF交正方形外角的平分线CF于点F. (1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明); (2)如图2,若点E在线段BC上滑动(不与点B,C重合). ①AE=EF是否总成立?请给出证明; ②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线上,求此时点F的坐标.
已知关于x的一元二次方程有两个实数根x1,x2. (1)求实数k的取值范围; (2)是否存在实数k使得成立?若存在,请求出k的值;若不存在,请说明理由.
如图,△ABC内接于⊙O,∠B=600,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC. (1)求证:PA是⊙O的切线; (2)若PD=,求⊙O的直径.
在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数. (1)求y与x满足的函数关系式(不要求写出x的取值范围); (2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?
如图,暑假快要到了,某市准备组织同学们分别到A,B,C,D四个地方进行夏令营活动,前往四个地方的人数. (1)去B地参加夏令营活动人数占总人数的40%,根据统计图求去B地的人数? (2)若一对姐弟中只能有一人参加夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加.用列表法或树形图分析这种方法对姐弟俩是否公平?