如图,已知抛物线L:y=ax2+bx+c(a≠0)与x轴交于A、B两点.与y轴交于C点.且A(-1,0),OB=OC=3OA.
(1)求抛物线L的函数表达式;
(2)在抛物线L的对称轴上是否存在一点M,使ΔACM周长最小?若存在,求出点M的坐标;若不存在,请说明理由.
(3)连接AC、BC,在抛物线L上是否存在一点N,使SΔABC=2SΔOCN?若存在,求出点N的坐标;若不存在,请说明理由.
(本题10分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元. (1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵? (2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.
(本题10分)如图,△ABC中,AB=AC,以AC为直径的⊙O与边BC交于点E.过E作直线与AB垂直,垂足为F,且与AC的延长线交于点G. (1)判断直线FG与⊙O的位置关系,并证明你的结论; (2)若BF=1,CG=2,求⊙O半径.
(本题10分)如图,一次函数的图象与坐标轴分别交于A、B两点,与反比例函数的图象在第二象限的交点为C,CD⊥x轴,垂足为D,若OB=2,OD=4,△AOB的面积为1. (1)求一次函数与反比例的表达式; (2)直接写出当时,的解集.
(本题8分)某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如下不完整统计图(每组数据包括右端点但不包括左端点),请你根据统计图解决下列问题: (1)此次调查抽取了多少用户的用水量数据? (2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数; (3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?
(本题8分)如图,已知点A(-3,4),B(-3,0),将△OAB绕原点O顺时针旋转90°,得到△OA1B1. (1)画出△OA1B1,并直接写出点A1、B1的坐标; (2)求出旋转过程中点A所经过的路径长(结果保留π).