甲、乙两车分别从A,B两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到B地,乙车立即以原速原路返回到B地.甲、乙两车距B地的路程y(km)与各自行驶的时间x(h)之间的关系如图所示.
(1)m= ,n= ;
(2)求乙车距B地的路程y关于x的函数解析式,并写出自变量x的取值范围;
(3)当甲车到达B地时,求乙车距B地的路程.
在△ABC中,三条边长分别为2n2+2n,2n+1,2n2+2n+1(n>0)。那么△ABC是直角三角形吗?请说明理由。
根据三角形的三边a,b,c的长,判断三角形是不是直角三角形: (1)a=11,b=60,c=61;(2)a=,b=1,c=;
如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°. (1)求∠BAC的度数. (2)若AC=2,求AD的长.
勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言. [定理表述] 请你根据图1中的直角三角形,写出勾股定理内容; [尝试证明] 以图1中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图2),请你利用图2,验证勾股定理.
如图,如图,在△ABC中,AD⊥BC于D,∠ABC=2∠C,求证:AC2=AB2+AB•BC.