如图, AB 为 ⊙ O 的直径, F 为弦 AC 的中点,连接 OF 并延长交 AC ̂ 于点 D ,过点 D 作 ⊙ O 的切线,交 BA 的延长线于点 E .
(1)求证: AC / / DE ;
(2)连接 CD ,若 OA = AE = a ,写出求四边形 ACDE 面积的思路.
通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化。类似的,可以在等腰三角形中建立边角之间的联系。我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图①在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA.容易知道一个角的大小与这个角的正对值也是相互唯一确定的。根据上述角的正对定义,解下列问题:如图②,已知sinA,其中∠A为锐角,试求sadA的值。
如图,点E是矩形ABCD中CD边上一点,⊿BCE沿BE折叠为⊿BFE,点F落在AD上.(1)求证:⊿ABE∽⊿DFE;(2)若sin∠DFE=,求tan∠EBC的值.
如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.(1)连结BE,CD,求证:BE=CD;(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.①当旋转角为 度时,边AD′落在AE上;②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.
将两块全等的三角板如图①摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图①中的△A1B1C顺时针旋转45°得图②,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图②中,若AP1=2,则CQ等于多少?(3)如图③,在B1C上取一点E,连接BE、P1E,设BC=1,当BE⊥P1B时,求△P1BE面积的最大值.
已知:矩形ABCD中,M为BC边上一点, AB=BM=10,MC=14,如图1,正方形EFGH的顶点E和点B重合,点F、G、H分别在边AB、AM、BC上.如图2,P为对角线AC上一动点,正方形EFGH从图1的位置出发,以每秒1个单位的速度沿BC向点C匀速移动;同时,点P从C点出发,以每秒1个单位的速度沿CA向点A匀速移动.当点F到达线段AC上时,正方形EFGH和点P同时停止运动.设运动时间为t秒,解答下列问题:(1)在整个运动过程中,当点F落在线段AM上和点G落在线段AC上时,分别求出对应t的值;(2)在整个运动过程中,设正方形与重叠部分面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围;(3)在整个运动过程中,是否存在点P,使是以DG为腰的等腰三角形?若存在,求出t的值;若不存在,说明理由.