如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.
(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;
(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;
(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是 个平方单位.
如图,在边长为4的正方形ABCD中,动点E以每秒1个单位长度的速度从点A开始沿边AB向点B运动,动点F以每秒2个单位长度的速度从点B开始沿折线BC﹣CD向点D运动,动点E比动点F先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动,设点F的运动时间为t秒. (1)点F在边BC上. ①如图1,连接DE,AF,若DE⊥AF,求t的值; ②如图2,连结EF,DF,当t为何值时,△EBF与△DCF相似? (2)如图3,若点G是边AD的中点,BG,EF相交于点O,试探究:是否存在在某一时刻t,使得?若存在,求出t的值;若不存在,请说明理由.
如图,在平面直角坐标系xOy中,点P(x,y)是抛物线上的一个动点,抛物线的对称轴与x轴交于点D,经过点P的直线PE与y轴交于点E,是否存在△OPE与△OPD全等?若存在,请求出直线PE的解析式;若不存在,请说明理由。
如图1,在等边△ABC中,点D是边AC的中点,点P是线段DC上的动点(点P与点C不重合),连结BP. 将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,连结AA1,射线AA1分别交射线PB、射线B1B于点E、F. (1)如图1,当0°<α<60°时,在α角变化过程中,△BEF与△AEP始终存在 关系(填“相似”或“全等”),并说明理由; (2)如图2,设∠ABP="β" . 当60°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由; (3)如图3,当α=60°时,点E、F与点B重合. 已知AB=4,设DP=x,△A1BB1的面 积为S,求S关于x的函数关系式.
将两块全等的三角板如图①摆放,其中∠ACB=∠DCE=90°,∠A=∠D=45°,将图①中的△DCE顺时针旋转得图②,点P是AB与CE的交点,点Q是DE与BC的交点,在DC上取一点F,连接BE、FP,设BC=1,当BF⊥AB时,求△PBF面积的最大值。
如图,菱形ABCD中,边长为2,∠B=60°,将△ACD绕点C旋转,当AC(即A′C)与AB交于一点E,CD(即CD′)同时与AD交于一点F时,点E,F和点A构成△AEF。试探究△AEF的周长是否存在最小值,如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值。