设 0 < α < π < β < 2 π ,向量 a ⇀ = ( 1 , 2 ) , b ⇀ = ( 2 cos α , sin α ) , c ⇀ = ( sin β , 2 cos β ) , d ⇀ = ( cos β , - 2 sin β ) . (1)若 a ⇀ ⊥ b ⇀ ,求 α ; (2)若 | c ⇀ + d ⇀ | = 3 ,求 sin β + cos β 的值; (3)若 tan α tan β = 4 ,求证: b ⇀ / / c ⇀ .
(本小题满分10分)选修4-1:几何证明选讲 如图所示,AC为的直径,D为的中点,E为BC的中点. (Ⅰ)求证:AB∥DE; (Ⅱ)求证:2AD·CD=AC·BC.
已知函数, (Ⅰ)时,证明:; (Ⅱ)若函数没有零点,求实数的取值范围;
椭圆()的左焦点为,右焦点为,离心率.设动直线与椭圆相切于点且交直线于点,的周长为. (1)求椭圆的方程; (2)求证:以为直径的圆恒过点
甲、乙、丙、丁四位好友约好出去游玩,为了增加乐趣,游玩的费用四人约好:每人掷一枚质地均匀的骰子决定出资的数值,掷出的点数为1或2的人出资200元,掷出的点数大于2的人出资100元; (1)求这4个人中恰好有两人出资200元的概率; (2)用分别表示四个人出资200元、100元的人数,记,求的概率分布列和数学期望;
如图,在斜三棱柱中,侧面与侧面都是菱形,,. (Ⅰ)求证:; (Ⅱ)若,求二面角的余弦值.