设 0 < α < π < β < 2 π ,向量 a ⇀ = ( 1 , 2 ) , b ⇀ = ( 2 cos α , sin α ) , c ⇀ = ( sin β , 2 cos β ) , d ⇀ = ( cos β , - 2 sin β ) . (1)若 a ⇀ ⊥ b ⇀ ,求 α ; (2)若 | c ⇀ + d ⇀ | = 3 ,求 sin β + cos β 的值; (3)若 tan α tan β = 4 ,求证: b ⇀ / / c ⇀ .
(本小题满分13分)设集合,,若。求实数a的取值范围。
已知函数()的单调递减区间是,且满足. (Ⅰ)求的解析式; (Ⅱ)对任意, 关于的不等式在上有解,求实数的取值范围.
某化工厂生产的某种化工产品,当年产量在150吨至250吨之内,其年生产的总成本(万元)与年产量(吨)之间的关系可近似地表示为 (1)当年产量为多少吨时,每吨的平均成本最低,并求每吨最低平均成本 (2)若每吨平均出厂价为16万元,求年生产多少吨时,可获得最大的年利润,并求最大年利润。
设函数,其中向量, (1)求函数的最小正周期和单调递增区间 (2)当时,恒成立,求实数的取值范围
已知数列、满足,,,。 (1)求数列的通项公式; (2)数列满足,求。