已知函数f(x)=x2+2x+alnx(a∈R).(1)当时a=﹣4时,求f(x)的最小值;(2)若函数f(x)在区间(0,1)上为单调函数,求实数a的取值范围.
如图,已知正四棱柱ABCD—A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F, ⑴求证:A1C⊥平面BDE; ⑵求A1B与平面BDE所成角的正弦值。
已知函数 (I)求曲线在处的切线方程。 (II)设如果过点可作曲线的三条切线,证明:
已知m>1,直线,椭圆C:,、分别为椭圆C的左、右焦点. (Ⅰ)当直线过右焦点时,求直线的方程; (Ⅱ)设直线与椭圆C交于A、B两点,△A、△B的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.
已知函数在与时都取得极值 (1)求的值与函数的单调区间 (2)若对,不等式恒成立,求的取值范围。
已知动圆M与直线y =2相切,且与定圆C:外切,求动圆圆心M的轨迹方程.