已知函数f(x)=.(1)求函数f(x)的定义域; (2)判断函数f(x)的奇偶性,并说明理由.
(本小题满分15分).已知、分别为椭圆:的上、下焦点,其中也是抛物线:的焦点,点是与在第二象限的交点,且。(Ⅰ)求椭圆的方程;(Ⅱ)已知点P(1,3)和圆:,过点P的动直线与圆相交于不同的两点A,B,在线段AB取一点Q,满足:,(且)。求证:点Q总在某定直线上。
(本小题满分14分)在长方体中,点是上的动点,点为的中点. (Ⅰ)当点在何处时,直线//平面,并证明你的结论;(Ⅱ)在(Ⅰ)成立的条件下,求二面角 的大小.
(本小题满分14分)已知各项均为正数的数列{an}前n项和为Sn,(p – 1)Sn = p2 – an,n ∈N*,p > 0且p≠1,数列{bn}满足bn = 2logpan.(Ⅰ)若p =,设数列的前n项和为Tn,求证:0 < Tn≤4;(Ⅱ)是否存在自然数M,使得当n > M时,an > 1恒成立?若存在,求出相应的M;若不存在,请说明理由.
(本小题满分14分)在中,角所对的边分别为,向量,且.(Ⅰ)求的值; (Ⅱ)若的面积为,求.
.已知等差数列的首项为,公差为b,等比数列的首项为b,公比为a(其中a,b均为正整数)。(I)若,求数列的通项公式;(II)对于(1)中的数列,对任意在之间插入个2,得到一个新的数列,试求满足等式的所有正整数m的值;(III)已知,若存在正整数m,n以及至少三个不同的b值使得等成立,求t的最小值,并求t最小时a,b的值。