已知椭圆:的右焦点,过的直线交椭圆于两点,且是线段的中点.(1)求椭圆的离心率;(2)已知是椭圆的左焦点,求的面积.
(本小题满分12分)在平面直角坐标系中,点M的坐标为(x,y),点P的坐标为(2,3).(I)在一个密封的盒子中,放有标号为1,2,3,4的三个形状大小完全相同的球,现从此盒中有放回地先后摸取两个球,标号分别记为x、y,求事件“=”的概率;(II)若利用计算机随机在[0,4]上先后取两个数分别记为x,y,求点M满足的概率
(本小题满分12分)如图,为圆的直径,点、在圆上,,矩形所在平面和圆所在的平面互相垂直.(Ⅰ)求证:AD∥平面BCF;(Ⅱ)求证:平面平面;
(本小题满分13分)如图,已知椭圆:的离心率为,左焦点为,过点且斜率为的直线交椭圆于两点.(Ⅰ)求椭圆的方程;(Ⅱ)求的取值范围;(Ⅲ)在轴上,是否存在定点,使恒为定值?若存在,求出点的坐标和这个定值;若不存在,说明理由.
(本小题满分12分)如图,在平行四边形中,,将它们沿对角线折起,折后的点变为,且.(1)求点到平面的距离;(2)为线段上的一个动点,当线段的长为多少时,与平面所成的角为?
(本小题满分14分)设、分别是椭圆:的左右焦点。(1)设椭圆上点到两点、距离和等于,写出椭圆的方程和焦点坐标;(2)设是(1)中所得椭圆上的动点,求线段的中点的轨迹方程;(3)设点是椭圆上的任意一点,过原点的直线与椭圆相交于,两点,当直线 , 的斜率都存在,并记为, ,试探究的值是否与点及直线有关.