已知圆的圆心为,,半径为,圆与离心率的椭圆的其中一个公共点为 ,、分别是椭圆的左、右焦点.(1)求圆的标准方程;(2)若点的坐标为,试探究直线与圆能否相切,若能,求出椭圆和直线的方程;若不能,请说明理由.
设为常数,且证明对任意假设对任意有,求的取值范围.
试判断下面的证明过程是否正确: 用数学归纳法证明: 证明:(1)当时,左边=1,右边=1 ∴当时命题成立. (2)假设当时命题成立,即 则当时,需证 由于左端等式是一个以1为首项,公差为3,项数为的等差数列的前项和,其和为 ∴式成立,即时,命题成立.根据(1)(2)可知,对一切,命题成立.
用数学归纳法证明