如图,在平面直角坐标系中,平行于轴且过点(3,2)的入射光线被直线反射.反射光线交轴于点,圆过点且与都相切。(1)求所在直线的方程和圆的方程;(2)设分别是直线和圆上的动点,求的最小值及此时点的坐标.
(本小题满分12分)已知函数().若函数在处取得极值,求的值;在的条件下,求证:;当时,恒成立,求的取值范围.
(本小题满分12分)在中,顶点,,、分别是的重心和内心,且.求顶点的轨迹的方程;过点的直线交曲线于、两点,是直线上一点,设直线、、的斜率分别为,,,求证:.
(本小题满分12分)如图,在四棱锥中,平面,,四边形,且,点为中点.求证:平面平面;求点到平面的距离.
(本小题满分12分)根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如下图显示.已知、、三个年龄段的上网购物者人数成等差数列,求,的值;该电子商务平台将年龄在之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1000位上网购物者中抽取5人,并在这5人中随机抽取3人进行回访,求此三人获得代金券总和为200元的概率.
(本小题满分12分)在中,,.求角的值;设,求.