已知函数.(1)当0<a<b且f(a)=f(b)时,①求的值;②求的取值范围;(2)已知函数g(x)的定义域为D,若存在区间[m,n]⊆D,当x∈[m,n]时,g(x)的值域为[m,n],则称函数g(x)是D上的“保域函数”,区间[m,n]叫做“等域区间”.试判断函数f(x)是否为(0,+∞)上的“保域函数”?若是,求出它的“等域区间”;若不是,请说明理由.
已知函数 (1)若在处取得极值,求的值; (2)讨论的单调性; (3)证明:为自然对数的底数)
过点作倾斜角为的直线与曲线交于点. (1)写出直线的一个参数方程; (2)求的最小值及相应的值.
已知椭圆经过点,其离心率为. (1) 求椭圆的方程; (2)设直线与椭圆相交于两点,以线段为邻边作平行四边形,其中顶点在椭圆上,为坐标原点.求到直线的距离的最小值.
.设椭圆C:的左焦点为,上顶点为,过点作垂直于直线交椭圆于另外一点,交轴正半轴于点, 且 ⑴求椭圆的离心率; ⑵若过三点的圆恰好与直线相切,求椭圆C的方程.
在数列中,任意相邻两项为坐标的点均在直线上,数列 满足条件:. (1)求数列的通项公式; (2)若求成立的正整数的最小值.