(本小题满分12分)已知函数.(1)求的值;(2)求函数的最小正周期及单调递增区间.
某学院为了调查本校学生2011年9月“健康上网”(健康上网是指每天上网不超过两小时)的天数情况,随机抽取了40名本校学生作为样本,统计他们在该月30天内健康上网的天数,并将所得数据分成以下六组:[O,5],(5,1 O], ,(25,30],由此画出样本的频率分布直方图,如图所示. (1)根据频率分布直方图,求这40名学生中健康上网天数超过20天的人数; (2)现从这40名学生中任取2名,设Y为取出的2名学生中健康上网天数超过20天的人数,求Y的分布列及其数学期望E(Y).
已知等比数列的公比大于1,是数列的前n项和,,且依次成等差数列. (1)求数列的通项公式; (2)若数列满足:,求数列的前n项和
设函数. (1)求不等式的解集; (2)若,恒成立,求实数他t的取值范围.
在直角坐标系xoy中,直线的参数方程为(t为参数)。在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为。 (1)求圆C的直角坐标方程; (2)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|.
如图,直线经过⊙上的点,并且⊙交直线于,,连接. (1)求证:直线是⊙的切线; (2)若⊙的半径为,求的长.