(本小题满分10分)选修4—5,不等式选讲已知函数 (1)解关于的不等式 (2)若函数的图象恒在函数的上方,求实数的取值范围。
设函数f(x)=|2x-1|+|2x-3|,x∈R (Ⅰ)解不等式f(x)≤5; (Ⅱ)若的定义域为R,求实数m的取值范围.
已知曲线C的极坐标方程为,直线的参数方程为( t为参数,0≤<). (Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状; (Ⅱ)若直线经过点(1,0),求直线被曲线C截得的线段AB的长.
已知函数f(x)=,x∈[1,3], (1)求f(x)的最大值与最小值; (2)若于任意的x∈[1,3],t∈[0,2]恒成立,求实数a的取值范围.
已知两点及,点在以、为焦点的椭圆上,且、、构成等差数列. (Ⅰ)求椭圆的方程; (Ⅱ)如图,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且,. 求四边形面积的最大值.
如图,已知在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F,G分别是PD,PC,BC的中点. (1)求证:平面EFG⊥平面PAD; (2)若M是线段CD上一点,求三棱锥M﹣EFG的体积.