如图,在直角坐标系中,⊙P的圆心P在x轴上,⊙P与x轴交于点E、F,与y轴交于点C、D,且EO=1,CD=,又B、A两点的坐标分别为(0,m)、(5,0)(1)当m=3时,求经过A、B两点的直线解析式;(2)当B点在y轴上运动时,若直线AB与⊙P保持相交,求m的取值范围.
如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的异侧,BM^直线a于点M,CN^直线a于点N,连接PM、PN; (1) 延长MP交CN于点E(如图2)。j求证:△BPM≌△CPE;k求证:PM=PN; (2) 若直线a绕点A旋转到图3的位置时,点B、P在直线a的同侧,其它条件不变。此时 PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由; (3) 若直线a绕点A旋转到与BC边平行的位置时,其它条件不变。请直接判断四边形MBCN 的形状及此时PM=PN还成立吗?不必说明理由。
某市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售。 (1)求平均每次下调的百分率; (2)某人准备以开盘均价购买一套100平方米的房子,开发商给予以下两种优惠方案供选择: ①求打九折销售;②不打折,送两年物业管理费。物业管理费每平方米每月1.5元,请问那种方案更优惠?
你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积) s (mm2)的反比例函数,其图像如图所示。 ⑴写出y与s的函数关系式; ⑵求当面条粗1.6mm2时,面条的总长度是多少米?
如图,菱形ABCD的对角线AC与BD相交于点O,点E、F分别为边AB、AD的中点,连接EF、OE、OF。求证:四边形AEOF是菱形。
如图,信封中装有两张卡片,卡片上分别写着7cm、3cm;信封中装有三张卡片,卡片上分别写着2cm、4cm、6cm;信封外有一张写着5cm的卡片.所有卡片的形状、大小都完全相同.现随机从两个信封中各取出一张卡片,与信封外的卡片放在一起,用卡片上标明的数量分别作三条线段的长度.用画树状图法,求这三条线段能组成三角形的概率.