请用圆规和直尺作一个已知角的平分线,保留作图痕迹,并写出作法.已知:∠AOB求作:∠AOB的平分线作法:
某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量 (件)与每件的销售价 (元)满足关系: =140-2.(1)写出商场卖这种商品每天的销售利润与每件的销售价间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?
如图,△ABC是一张锐角三角形的硬纸片,AD是边BC上的高,BC=40cm,AD=30c从这张硬纸片上剪下一个长HG是宽HE的2倍的矩形EFGH,使它的一边EF在BC上,顶点G、H分别在AC,AB上,AD与HG的交点为M.(1)求证:=(2)求这个矩形EFGH的周长.
已知抛物线与轴有两个不同的交点.(1)求的取值范围;(2)抛物线与x轴两交点的距离为2,求的值.
如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2:(1)将△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;(2)以图中的点O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2
(14分)如图,抛物线:y=ax2+bx+1的顶点坐标为D(1,0),(1)求抛物线的解析式;(2)如图1,将抛物线向右平移1个单位,向下平移1个单位得到抛物线,直线,经过点D交y轴于点A,交抛物线于点B,抛物线的顶点为P,求△DBP的面积; 如图2,连结AP,过点B作BC⊥AP于C,设点Q为抛物线上点至点之间的一动点,连结 并延长交于点,试问:当点Q运动到什么位置时,△BCF的面积为。